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Abstract

Detailed and dense reward functions provide clearly graded
signals that enable a robot to evaluate and improve its pol-
icy, but generating such functions for new tasks is often
cumbersome and expertise-intensive. On the other hand,
end users can often easily record a video demonstrating the
desired object trajectories and goal configurations involved
in a new skill, but we lack methods to reliably learn from
such a simple specification. We propose “Points2Reward”
(P2R), which effectively computes dense rewards from a sin-
gle video. To do this, P2R tracks task-relevant object points
in task demonstrations and policy rollouts, and matches
them to compare the desired and achieved object trajecto-
ries to generate reward scores. Exploiting recent advances
in point tracking and semantic point correspondences, P2R
produces high-quality rewards even under significant do-
main gaps between the demo video and the robot setup, such
as embodiment gaps (human vs. robot) or camera viewpoint
changes. We demonstrate that P2R correctly evaluates tra-
jectories of varying quality in diverse real-world settings
as well as in nine simulated manipulation tasks in standard
benchmark suites. We further demonstrate that P2R policy
evaluations enable improved downstream policy synthesis
in the simulated tasks.

1. Introduction
General-purpose robots of the future must be capable of
quickly and painlessly learning new sensorimotor skills
from their end users. Finding the right specifications to en-
able such skill acquisition will be critical: a general specifi-
cation such as a dense reward function can serve as a versa-
tile evaluation function, which in robot learning, can drive
policy optimization in many downstream policy synthesis
approaches such as online or offline reinforcement learning,
or even model-based planning. However, directly generat-
ing reward functions is not scalable: it is regularly cum-
bersome and error-prone even for experts [6]. Instead, a
particularly attractive starting point for a user-friendly form
of task specification involves collecting a small dataset of

demonstrations of the desired behavior either directly on
the target robot, or even simpler, of a human performing
the task. However, translating such small demonstration
datasets into useful representations for policy evaluation
and synthesis, has been elusive in the most general settings.

We focus on the large space of manipulation skills that
are fundamentally about moving objects, broadly construed,
along some desired trajectories and towards desired goal
configurations. For such a task, perhaps the most natural
description is to specify sequences of desirable 3-D posi-
tions of all the constituent particles on the objects of inter-
est. Then, for a robotic policy attempting the task, com-
puting the distances of each particle from these sequences
offers a simple means of evaluating task progress.

Starting from this intuition, we propose to build on recent
advances in correspondence matching and tracking with
point-based image representations, to: (1) identify and track
points on task-relevant objects in a robot or human demon-
stration video to approximately represent it in the point tra-
jectory format suggested above, (2) compute corresponding
points on potentially new objects in a robotic setting of in-
terest, and (3) thereafter track the corresponding points to
enable reward computation. In this paper, we investigate
various choices for implementing this straightforward high-
level idea.

In our investigation, we focus on task specifications
that are easiest on the end user and which hitherto have
proven most challenging for the robot learner: a single user-
provided demonstration video, potentially involving chal-
lenging domain gaps from the target robotic setting, such
as embodiment gaps (e.g., the video is of a human per-
forming the task, rather than the target robot), or camera
viewpoint gap (i.e., the video is captured from a different
viewpoint), or more broadly scene-level gaps (e.g., lighting,
backgrounds, distractor objects). Our point trajectories-
based approach outlined above holds promise for over-
coming these challenges: focusing on the objects of inter-
est excludes the embodiment from the representation, and
may also help overcome many irrelevant scene-level do-
main gaps such as changes in backgrounds, distractor ob-
jects, and lighting. Further, semantic point correspondences
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Figure 1. Overview of Points2Reward. We use semantic point correspondence and off-the-shelf point tracking to generate matching point
tracks of the demonstration and rollout video. We then use the two point tracks to compute a goal-based reward.

may enable handling variations even in the task-relevant ob-
jects between the source video and the target robot scene,
e.g., two different instances of a coffee mug. Finally, the
transformations of point projections under camera perspec-
tive changes are well understood, and may help overcome
point gaps. We investigate these potential benefits of our
approach thoroughly in our experiments.

In summary, our contributions are:
1. We introduce Points2Reward (P2R), a novel approach

that leverages point tracking to generate dense rewards
from a single video, even with significant domain gaps.

2. In a variety of real-world and simulated environments,
we show that P2R reliably provides accurate robot policy
evaluations highly correlated with manually engineered
“ground-truth” rewards.

3. We demonstrate that P2R can usefully filter trajectories
from a dataset of mixed quality for robot policy synthesis
across nine simulated visual control tasks in both Meta-
World and Franka Kitchen environments.

2. Background and Problem Setup
This work deals with inferring rewards from a video demon-
strating an example of good task performance. This is best
understood within the context of a Markov Decision Pro-
cess (MDP) formulation of robotic tasks.
Markov Decision Process Formulation: An (undis-
counted) finite-horizon MDP (S,A, P,R,H, µ) consists of
a set of states S that the world can be in, actions A avail-
able to the robot at each time, and a transition function
P (st+1|st, at) that describes how states s ∈ S evolve
in response to an agent action a ∈ A at each discrete
timestep t, up to the horizon of H steps. µ is the initial
distribution over states that the robot is spawned into in
each episode. Finally, we are ready to describe the reward
rt = R(st, at, st+1), which is a scalar quantity revealed

to the agent after each state transition. This reward deter-
mines the agent’s objective in the environment: the agent’s
“policy” π(at|st), which determines its action at upon ob-
serving a state st, must maximize the expected cumulative
reward Eµ,P,π[r1+r2+r3+ ...rH ]. We are concerned with
vision-based robotic tasks, where the MDP is “partially ob-
served”. This entails that the agent does not directly observe
states s, but instead observes camera images ot = o(st) of
the scene at each step.
Demonstration Video: In addition, we do not assume that
rewards R(st, at, st+1) are available. Instead, we are left to
infer these using only a video demonstration δ. This demo δ
is an observation sequence δ = [o1, o2, o3, ..., oH ] encoun-
tered by an optimal (or more practically, an approximately
optimal) agent policy. We seek to permit maximal flexibil-
ity in how δ is collected: for example, the correct behavior
might be demonstrated by a human actor rather than a robot
agent, from a camera viewpoint that is different than the
robot’s own, with objects that are different and in a room
that is different from the target robotic task setup.
The Reward Inference Problem: When “inferring re-
wards” from δ, we aim to achieve the following. Given a
new observed trajectory τ = [oτ1, oτ2, ..., oτH ], we aim to
assign scalar rewards rt = R̂t(oτt, δ) at each time t, such
that they “correctly evaluate” the rollout. In particular, we
would like that higher inferred rewards or returns (cumula-
tive returns over an episode) should always correspond to
higher true rewards or returns respectively. This in turn im-
plies that any optimum of the inferred reward objective will
also be an optimum of the true reward objective. Thus, such
an inferred reward may be used in place of the true reward,
for downstream synthesis of optimal policies, such as with
reinforcement learning or model-based planning.



3. Our Approach: Points2Reward
As discussed above, we aim to infer vision-based rewards
from a demo video δ, ideally placing minimal requirements
on how well δ matches the target robotic task setup (scene
background, agent embodiment, camera viewpoint, object
instances, distractor objects etc.). As we have argued above,
the essence of a manipulation task is often well-described
by the desired movements of various particles on the ob-
jects of interest, and distances from those desired move-
ments may offer a simple route to “inferred rewards”.

We seek as direct an implementation of this principle as
possible. In line with this, our method uses a task-relevant
point track representation of the demonstration video δ and
a semantically corresponding point track representation of
the target video τ . These are described in detail in Sec-
tion 3.1. Then, Section 3.2 describes how these point tracks
are aligned and a dense per-timestep reward is computed by
measuring the misalignment of each trajectory frame from
the demo video. Figure 1 presents a schematic overview.

3.1. Point Track Representations
We now discuss how the demo video δ and target robot tra-
jectory τ are represented as corresponding point tracks, over
which dense rewards will be computed in the Section 3.2.
Tracking Desired Object Point Tracks. Given the demo
video, we initialize a uniform grid, typically of size 20x20
points over the first frame. We track these points through
the demonstration video to produce a set of point trajecto-
ries using CoTracker2 [23].

Next, we use simple heuristics to post-process these
point tracks to exclude agent points and other task-irrelevant
points in the scene. First, we automatically filter out agent
points, a standard procedure in prior works [2, 19]. Sec-
ond, all stationary point tracks in the video are discarded as
task-irrelevant: we found that this simple heuristic sufficed
to identify task-relevance in all our test settings, but alterna-
tive more sophisticated approaches for task-relevance may
be used, for example, using sketches or language descrip-
tions of the task as in [22, 41].

We are left with a set of desired task-relevant object point
trajectories Tδ = {tδ1, tδ2..., tδn} ∈ RH×n×d with video
length H and number of filtered points n. In our experi-
ments, we use d = 3-dimensional point tracks when demo
videos are captured with a single RGB-D camera, but we
demonstrate that when the demo is only captured with an
RGB camera, d = 2-dimensional point tracks can also yield
good rewards.
Semantic Correspondence. Having computed the demo
point track representation Tδ , we must also compute similar
point track representations for each robot policy rollout that
we are looking to compute dense rewards for. To do this,
we now seek to match each filtered point in Tδ to a corre-
sponding point in each robot rollout video through semantic

correspondence matching.
We match the first frame of the demonstration video to

the first frame in the robot rollout. We compute DINOv2
[37] patch embeddings for the initial images in both the
demo and robot rollout videos. We then compute the co-
sine similarity between all patches in the demo and robot
initial frames. Given a point within a patch in the demo
video, we take the maximum similarity patch in the target
rollout as the matched location. The matched points are
then tracked in the robot rollout video using CoTracker just
as done above for the demo video, providing a correspond-
ing set of point trajectories Tτ = {tτ1, tτ2, ..., tτn}.

3.2. Point Track Matching For Dense Rewards
Having computed the point track representations Tδ and Tτ

for the demo and rollout video, we now proceed to match
the rollout to the demo to compute per-timestep rewards.
Aligning Demo and Rollout Tracks. The point matching
in Sec 3.1 relied only on semantic cues, because we do not
assume that the demo video and the policy rollout video are
geometrically aligned. In the most general case, the robot
video may be captured with different task-relevant object
instances and from a different relative camera viewpoint
(as in some of our experimental settings). In such cases,
the point correspondences detected on the first frames serve
as the basis for estimating a transformation that aligns the
point tracks in preparation for reward computation.

For example, if the tracks are in 3-D, we may in the most
general case compute a 3-D similarity transformation Sτ→δ

that best aligns the semantic point correspondences tτ1 de-
tected in the first frame of the rollout video to the first frame
of the demo tδ1 [17]. This transformation is then applied to
the rollout points at all subsequent frames i.e. Sτ→δ(Tτ ) =
{Sτ→δ(tτ1),Sτ→δ(tτ2),Sτ→δ(tτ3), ...Sτ→δ(tτn)}. As we
will show in some of our simpler experimental setups, we
find it sufficient to compute much simpler transformations
Sτ→δ , such as plain 2D translations to align 2-D rollout
point tracks to 2-D demo point tracks.
Computing Rewards from Point Trajectories. After
aligning demonstration and target trajectory tracks, we for-
mulate our reward as the negated distance to goal, where the
goal is the n point locations Tδ[H] in the last demo frame:

r̂t = − 1

Lτ
R̂t(oτt, δ) = d(Sτ→δ(Tτ )[t], Tδ[H]), (1)

where d(·, ·) is the sum of n point-wise Euclidean distances
between the point sets. To account for trajectories of dif-
ferent lengths, we divide the reward sum by the trajectory
length of the rollout Lτ . In our ablations (Section 5.4),
we evaluate alternative distance measures, such as Dynamic
Time Warping [10] distance, Sinkhorn Optimal Transport
[39] distance, and delta distance to goal r̂t+1 − r̂t between
the next step and current step.



4. Related Work

4.1. Methods to Generate Rewards

Various works have explored how to generate reward or
value functions for robotics. These methods can largely be
categorized into the 3 categories below.
Image Embeddings As Reward Functions. Several early
works in inverse reinforcement learning [1, 18, 53, 59] in-
fer rewards from an in-domain robot demonstration dataset,
sometimes with different embodiments [44, 45, 57], such
that trajectories more similar to the demonstrations are
scored more highly. Other works aimed to leverage more
out-of-domain datasets or models to learn rewards based on
visual embeddings, such as in-the-wild human videos [7,
36] and vision-language embeddings pre-trained on inter-
net data [3, 43, 46]. The Value-Implicit Pre-training (VIP)
line of works [5, 30, 31] train visual embeddings on in-
ternet videos with offline RL objectives to produce goal-
conditioned rewards. Other recent works [15, 16, 29],
such as ROT [15] propose to generate rewards by perform-
ing trajectory matching using image embedding of a sin-
gle in-domain demonstration. While these methods focus
on generating rewards through image embeddings, we use
points as a more natural and interpretable representation for
robotic task progress. This allows us construct more in-
formative reward signals and better compensate for domain
gaps of out-of-domain demo videos, as argued above and
demonstrated throughout our experiments.
Foundation Model Language-Based Rewards. Recently,
many have leveraged Large Language Models (LLMs) and
Vision-Language Models (VLMs) to construct language-
based rewards for robotics. The advantage of using lan-
guage to specify rewards is we can circumvent the need
of collecting demonstration videos for a task. Some works
have used them to provide sparse [9, 27, 34] and dense [33]
reward values or preference feedback [25, 49], while others
even prompt them to generate code for reward or cost func-
tions [20, 21, 32, 40, 48, 51, 55]. Notably, GVL [33] lever-
ages VLM to predict per-frame task progress in-context.
ReKep [21] employs vision foundation models to propose
keypoints and then prompts a VLM to generate keypoint
cost functions in code. Aside from the high cost and slow
inference speeds associated with using LLMs and VLMs,
we empirically show that the rewards they produce are often
inaccurate and noisy due to their lack of spatial and physical
understanding.
Object & Geometry-Oriented Rewards. Most related to
our work, recent methods haven taken an object and geome-
try oriented approach to generating rewards. ReKep [21], as
discussed above, produces keypoint-based constraint func-
tions in code, but is limited by its reliance on VLMs for spa-
tial reasoning. Concurrently with our work, HuDOR [13]
builds reward functions by matching 2D movements of the

object centroid between a human demonstration and robot
policy in the same scene. By contrast, we compute goal-
conditioned rewards using 3D point trajectories semanti-
cally and temporally consistent across different videos. Mo-
tion of individual points are a naturally more informative
representation of task progress than the object centroid, es-
pecially for articulated and deformable objects. We are also
able to explicitly compensate for domain gaps and compute
rewards from an out-of-domain demonstration, such as a
human demonstration in a different scene with different ob-
jects, by leveraging points as more fine-grained geometric
features. We compare against and outperform a strength-
ened variant of HuDOR.

4.2. Applications of Point Tracking in Robotics

The remarkable recent advancements in point tracking
methods [8, 23, 24] have inspired a wide range of appli-
cations of these techniques in the field of robotics.
As action space. As a straightforward extension of the abil-
ity to track any points, several works [4, 14, 26, 47, 56, 58]
have investigated directly acquiring robot actions from
point tracks by computing geometric transforms or visual
servoing without any policy training. However, since point
tracks do not inherently contain information about fine-
grained robot-object interaction (e.g. grasping), these ap-
proaches face several limitations: they typically rely on
task-specific assumptions, manually designed robot prim-
itives, and are sensitive to the tracking accuracy of each in-
dividual point.
As intermediate representation for behavior cloning.
Another common strategy employed in other works [4, 11,
14, 28, 42, 50, 52] is to use point tracks as an intermedi-
ate representation for policy learning, typically leading to
a two-stage approach: first, training a point track predic-
tion model, and then training a policy model conditioned
on these point track predictions to generate robot actions
based on robot data.

As we have argued above, point tracks are a particularly
well-suited representation for a reward function specifying
a task. P2R therefore focuses on exploiting point tracks for
inferring rewards from a single demo video.

5. Experiments

Our method designs a point-based reward function that fa-
cilitates efficient autonomous performance evaluation and
policy learning from noisy human and robot demonstra-
tions. With both simulated demonstrations and human
demonstrations, our experiments aim to answer: 1. Does
P2R enable more accurate evaluation of robot policies than
prior baselines? 2. How robust is P2R to domain gaps
between the demonstration and target videos? 3. Can we
leverage P2R for more effective robot policy synthesis? 4.



What are the key design choices in P2R, and how do they
impact performance?

5.1. Experimental Setup
Environments. We adopted the evaluation paradigm
from [15] and evaluate P2R on 6 tasks in Meta-World [54]:
Hammer, DrawerClose, DrawerOpen, BinPicking, But-
tonPress, and DoorOpen as well as 3 tasks in Franka
Kitchen [12]: SlideDoor, OpenDoor, and OpenMicrowave.
For all environments except for Meta-World DrawerOpen
and ButtonPush we collect human demonstrations. These
environments are depicted in Figure 2. In Meta-World, the
object positions are randomized for each episode, whereas
in Franka Kitchen, the robot pose is randomized.

In some experiments, we additionally evaluate two real-
world human-only deformable-object manipulation tasks:
ShirtFolding (pick up the right side of the shirt and fold it in
half, see Figure 4) and RopeShaping (deform a straight rope
into a “W” shape). For these two tasks, we only have hu-
man videos to serve both as demos as well as target success
or failure trajectories.
Baselines. We evaluate P2R against a comprehensive suite
of representative baselines for computing vision-based re-
wards with or without reference to demo videos, as re-
viewed in Sec 4. ROT [15] uses Sinkhorn distance [38]
on the demo and target robot video embeddings matched by
optimal transport. We use one demo to pre-train the encoder
for computing reward embeddings. We also compare P2R
to popular visual encoders and reward functions pre-trained
on egocentric human videos. R3M [36] and VIP [30] are
popular pre-trained image encoders on robot-specific data.
Reward for R3M embeddings is computed using the eu-
clidean distance between the current frame embedding and
the goal embedding. For VIP, we adopted the original re-
ward function formulation.

Next, we compare to a concurrently developed object-
oriented method, HuDOR, which estimates object-
movement as the 2D movement of its centroid. We find
that the original HuDOR fares poorly in our settings be-
cause it requires LangSam [35] language-based segmenta-
tions, which frequently fail or are inconsistent across an
episode. To provide a more useful point of comparison,
we develop HuDOR+, where we strengthen HuDOR with
the task-relevant point filtering and semantic point matching
components of our approach, as described in Section 3.1.
The reward computed from corresponding point set trajec-
tories is formulated as the difference in mean point displace-
ment for temporally aligned frames in the demonstration
and target robot videos.

Next, we compare to a recent LLM/VLM reward gener-
ation baseline, Generative Value Learning (GVL) [33]. We
compare against 1-shot GVL, which is given both a refer-
ence video and a text description of the task to be com-

pleted. An LLM is then prompted with the reference video
as context for task progress, and is asked to output the task
completion progress of the target robot video. Since this is
a value measure similar to VIP, we take the difference in
timesteps’ LLM-prescribed values as our reward function.
This is done with videos subsampled to 30 total frames.
These rewards are then linearly interpolated back to the
original video length.

We also considered another related VLM-based ap-
proach, ReKep [21]. However, it is not designed to per-
form reward generation consistent across multiple episodes.
Demo Videos. Our demo videos in various tasks are col-
lected with both robot and human agents demonstrating the
desired behaviors. Robot demonstrations are collected with
RGB-D cameras. For convenience, human demonstrations
are collected with simple RGB cameras filming a human
completing a task in an approximately similar real-world
scene. As illustrated in Figure 2, there are significant do-
main shifts between robot and human demonstrations, given
variations in lighting, object appearances, positions, and vi-
sual fidelity.

5.2. Policy Evaluation with P2R

Reward Gaps Between Success and Failure Trajectories.
We first collect obvious success and failure videos for all 11
tasks (9 sim + 2 real) and compute rewards using P2R and
baselines for each trajectory. Demos for the real world tasks
and for the 3 Franka Kitchen tasks are human-provided, and
those for the Meta-World tasks are obtained from expert-
level robot policies.

How well does each approach separate these obvious
successes and failures? Figure 3 averages the instantaneous
reward gap between successes and failures over all 11 tasks.
Figure 4 zooms into the case of real-world ShirtFolding:
(bottom) shows one success and one failure video, and (top)
shows the inferred reward gap between those two videos.
The trends in both plots are similar: P2R reward gaps are
largest and most clearly reflect the increasing gap between
success and failure episodes over time. R3M and VIP en-
code the entire image as one vector and as such struggle
both to overcome domain gaps as well as to capture fine-
grained details. HuDOR summarizes each object as one
point, and while it is arguably the best-performing baseline
on average across tasks in Figure 3, it performs particularly
poorly in cases like ShirtFolding (Figure 4) where the shirt’s
centroid is obviously too coarse of a description. The VLM-
based GVL approach fares poorly both on average and on
ShirtFolding.
Precision-Recall Of Thresholded Rewards. Having es-
tablished the value of P2R at this coarse-grained task, we
now evaluate it in more difficult settings consisting of finer
gradations in trajectory quality. To do this, we collect re-
play buffers from reinforcement learning training episodes



Figure 2. Simulated Environment Suite. 7 environments with corresponding human demo and 2 additional robot-only Meta-World envs

Figure 3. Instantaneous reward gap between successful and failed
rollouts over time, averaged across 11 tasks (9 sim + 2 real world).

Successful Rollout

Failed Rollout

Figure 4. Reward gap between successful and failed shirt folding
target robot videos. Colored points and lines on the shirt represent
the initial point selections and their trajectories. Dashed lines on
the plot correspond to the timesteps for frames that have the same
color outline.

in each simulated environment to yield a range of episode
samples, achieving varying success rates and true episode
rewards. On these more challenging trajectory datasets, we
use thresholded inferred rewards from each method as a

P2R (Ours) HuDOR ROT R3M VIP GVL

Meta-World (Robot Demo) 0.78 0.79 0.67 0.48 0.72 0.36
Meta-World (Human Demo) 0.65 0.60 0.21 0.25 0.25 0.25

Franka (Robot Demo) 0.94 0.58 0.88 0.62 0.96 0.37
Franka (Human Demo) 0.41 0.49 0.28 0.21 0.19 0.26

Average 0.70 0.62 0.51 0.39 0.53 0.31

Table 1. Average-Precision For success detection using P2R re-
ward, averaged across all tasks within an environment. Rewards
are inferred from a single “Robot” or “Human” demo.

success/failure classifier, and compute its average precision
(area under the precision-recall curve), a standard metric
for classification accuracy (higher is better). See results in
1. We find that, on average, P2R yields the highest average
precision (AP). This augurs well for downstream applica-
tions of P2R for policy synthesis, such as with offline RL
methods. We will evaluate a simple version of such an ap-
proach later in Section 5.3.
Correlations With Manually Designed Rewards. Thus
far, we have relied solely on ground-truth binary episode-
level successes and failures to evaluate inferred rewards.
Besides these binary notions, all 9 simulated environments
also offer a carefully engineered task-specific simulator-
state-based reward function designed to provide useful
feedback to reinforcement learning policies at all stages
of training. How closely do our vision-based rewards in-
ferred from one demo approach these “gold standard” re-
ward functions, in terms of both episodic returns and in-
stantaneous rewards?

We compute the rank-order correlation (ROC) between
generated and environment rewards for each method to
compare reward alignment. Intuitively, the ROC score for
a reward inference method measures the extent to which
higher rewards computed by that method are indicative of
higher manually engineered rewards. Figure 5 shows that
in Meta-World and Franka Kitchen, P2R consistently per-
forms well across all tasks and on average, using both hu-
man and robot demonstrations. However, we observe a
significant drop in ROC for P2R on Franka Kitchen tasks
when transferring from generating rewards with robot demo
to human demo. Franka Kitchen tasks such as open door
and open microwave contain significant object movement



Figure 5. Rank-Order Correlations for Cumulative (“Episode”) and Instantaneous (“Timestep”) rewards vs manually engineered reward
functions. Rewards are inferred from a single “Robot” or “Human” demo.

Figure 6. Point Matching Across Viewpoints

Figure 7. Metaworld Rank-Order Correlations with Camera
Change (Robot Demo)

towards the cameras, that 3D points in our robot demo ex-
periments capture much better than 2D points in our experi-
ments with human demos. P2R generally outperforms base-
lines as evaluated on both per-episode and per-timestep re-
ward. P2R’s high per-episode correlation shows that its gen-
erated rewards can accurately measure overall robot rollout
success. Additionally, the strong per-timestep ROC demon-
strates that P2R not only effectively captures performance at
the episode level but also provides a precise, dense measure
of task progression throughout each robot rollout.

Having thoroughly validated P2R on the human-to-robot
embodiment and real-to-sim scene gap in the foregoing ex-
periments, we now test another challenging gap: large cam-
era viewpoint variations between the demo and the target
setup (Figure 6). Recall that our alignment approach of
Sec 3.2 is capable of handling such variations. Indeed, Fig-
ure 7 shows that P2R continues to substantially outperform
the baselines.

5.3. Policy Synthesis Driven By P2R
Finally, we validate P2R for a downstream use of inferred
rewards: filtered behavior cloning based policy synthesis,
as also performed in GVL [33]. Inferred rewards can help
filter mixed-quality datasets to select successful demonstra-
tions to improve imitation learning. Specifically, we choose
the top k robot episodes from collections of hundreds of
episodes to train our behavior cloning (BC) policies.
Simulation Results. Figure 9 show that P2R outperforms
all baselines once more for all values of k. This is in line
with the AP scores reported in Table 1: P2R simply selects
better demonstrations to imitate.
Real-World Results. We present real-world policy synthe-
sis for 3 tasks (hardest to easiest): towel folding, rotating
a valve, opening a drawer. We train policies on mixed-
quality (35% successes) human demos using filtered BC.
Tab. 2 shows that P2R is best on all tasks, in line with sim-
ulation policy results. Fig. 8 shows an example of seman-
tic matching operating robustly between our very different
(viewpoint, background, object position) human demo and
robot setups.
Table 2. Real-World Dataset Filtering: Filtered BC Performance

Task Num. Demos P2R HUDOR++ VIP GVL

Towel Fold 200 11/20 3/20 1/20 3/20
Open Drawer 100 20/20 14/20 14/20 2/20
Rotate Valve 100 8/20 1/20 2/20 5/20

Figure 8. Valve Rotation Human Demo vs Robot Rollout: Domain
Gaps and Point Matches.



Robot Demo Video Human Demo Video Robot Demo Video Human Demo Video
Franka Kitchen Meta-World

Figure 9. Behavior Cloning Performance Using Top k Robot Episodes from Mixed-Quality Datasets over varying k.

Figure 10. P2R Rank Order Correlations with 2D vs. 3D Points

5.4. Ablations
We show ablation experiments to justify the various design
choices of P2R.
Using 2D vs 3D points. We evaluate the ROC scores of P2R
when raising points to 3D or when keeping trajectories 2D.
In Figure.10 we find that P2R performs best with 3D points.
2D point representations may struggle capturing movement
along the depth axis, giving P2R with 3D points an advan-
tage on tasks with this property. For example, P2R with 2D
point representation struggles in the Franka Kitchen Open
Microwave task, where the microwave opens directly at the
camera, yielding little 2D pixel displacement to assign re-
wards with. Due to this major advantage in using 3D points
and its empirical advantages, we use 3D points as our repre-
sentation in our main method when depth images are avail-
able (Robot demonstrations in our experiments).
Distance function for P2R. P2R generates corresponding
point trajectories in 2D or 3D space for both the demon-
stration and target robot videos. The similarity of these
point trajectories can be evaluated by a variety of distance
measures. We test three additional distance measures, Opti-
mal Transport, Dynamic Time Warping, and euclidean dis-
tance to goal delta. We implement our optimal transport
cost function and reward assignment according to ROT [15]
where the Sinkhorn distance [38] compares demonstration
and rollout trajectory representations. Additionally we im-
plement Dynamic Time Warping [10], to relatively slow
down and speed up trajectory timesteps to match trajecto-
ries in time before taking the euclidean distance between

Figure 11. P2R Rank Order Correlations with Different Distance
Functions in Meta-World

aligned timesteps. Finally, we test euclidean distance to
goal delta, which is similar to euclidean distance to goal
functions, except that reward for a given timestep is the re-
duction in that timestep’s euclidean distance to goal.

We compute ROC scores using P2R trajectory genera-
tion for each distance measure in Figures 11 . Across all
experiments, we find that euclidean distance to goal is equal
or slightly better for per-episode ROC. Additionally, we find
that euclidean distance to goal is always much better than
other baselines for per-timestep reward ROC. This suggests
that manually engineered and optimized reward functions
often correlate to a measure of distance to a target state.
Since euclidean distance to goal outperforms other exam-
ined cost functions in ROC scores across both demo types
and simulated environments, we adopt euclidean distance to
goal as P2R’s distance measure.

6. Conclusion and Limitations
In this work, we introduced Points2Reward (P2R), a novel
method that leverages point tracking to translate a single
demonstration video into an informative dense reward func-
tion highly correlated with true task progress, even across
significant domain gaps, such as embodiment, viewpoint,
and scene-level differences. Moreover, we validate its prac-
tical utility by using P2R to evaluate and filter mixed-quality
trajectories, resulting in improved robot policy synthesis.

Our approach still faces challenges related to tracking
and semantic correspondence failures, particularly under



significant occlusion or visual ambiguity. When facing
challenging domain gaps, even though P2R outperforms
baselines, there is still some performance degradation com-
pared to learning from an in-domain demo. Additionally,
relying solely on individual point movements can some-
times lead to misspecified tasks-for instance, incorrectly in-
terpreting a demonstration of a door opening to the right
when the target scenario involves a left-opening door. This
limitation partly arises from the simplistic design choices
in this initial implementation, which currently neglects re-
lationships among points or groups of points. Incorporating
richer relational reasoning could enable the method to gen-
eralize effectively to more sophisticated, multi-object ma-
nipulation tasks, such as stacking a set of blocks.

References
[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning

via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
page 1, 2004. 4

[2] Shikhar Bahl, Abhinav Gupta, and Deepak Pathak.
Human-to-robot imitation in the wild. arXiv preprint
arXiv:2207.09450, 2022. 3

[3] Kate Baumli, Satinder Baveja, Feryal Behbahani, Harris
Chan, Gheorghe Comanici, Sebastian Flennerhag, Maxime
Gazeau, Kristian Holsheimer, Dan Horgan, Michael Laskin,
et al. Vision-language models as a source of rewards. arXiv
preprint arXiv:2312.09187, 2023. 4

[4] Homanga Bharadhwaj, Roozbeh Mottaghi, Abhinav Gupta,
and Shubham Tulsiani. Track2act: Predicting point tracks
from internet videos enables diverse zero-shot robot manip-
ulation, 2024. 4

[5] Chethan Bhateja, Derek Guo, Dibya Ghosh, Anikait Singh,
Manan Tomar, Quan Vuong, Yevgen Chebotar, Sergey
Levine, and Aviral Kumar. Robotic offline rl from inter-
net videos via value-function pre-training. arXiv preprint
arXiv:2309.13041, 2023. 4

[6] Serena Booth, W Bradley Knox, Julie Shah, Scott Niekum,
Peter Stone, and Alessandro Allievi. The perils of trial-and-
error reward design: Misdesign through overfitting and in-
valid task specifications. In Proceedings of the 37th AAAI
Conference on Artificial Intelligence (AAAI), 2023. 1

[7] Annie S Chen, Suraj Nair, and Chelsea Finn. Learning gener-
alizable robotic reward functions from” in-the-wild” human
videos. arXiv preprint arXiv:2103.16817, 2021. 4

[8] Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush
Gupta, Yusuf Aytar, Joao Carreira, and Andrew Zisserman.
Tapir: Tracking any point with per-frame initialization and
temporal refinement. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 10061–
10072, 2023. 4

[9] Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil Raju,
Jessica Landon, Felix Hill, Nando de Freitas, and Serkan
Cabi. Vision-language models as success detectors. arXiv
preprint arXiv:2303.07280, 2023. 4

[10] Toni Giorgino. Computing and visualizing dynamic time
warping alignments in r: The dtw package. Journal of Sta-
tistical Software, 31(7):1–24, 2009. 3, 8

[11] Jiayuan Gu, Sean Kirmani, Paul Wohlhart, Yao Lu, Montser-
rat Gonzalez Arenas, Kanishka Rao, Wenhao Yu, Chuyuan
Fu, Keerthana Gopalakrishnan, Zhuo Xu, Priya Sundare-
san, Peng Xu, Hao Su, Karol Hausman, Chelsea Finn, Quan
Vuong, and Ted Xiao. Rt-trajectory: Robotic task general-
ization via hindsight trajectory sketches, 2023. 4

[12] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey
Levine, and Karol Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning.
ArXiv, abs/1910.11956, 2019. 5

[13] Irmak Guzey, Yinlong Dai, Georgy Savva, Raunaq Bhi-
rangi, and Lerrel Pinto. Bridging the human to robot dex-
terity gap through object-oriented rewards. arXiv preprint
arXiv:2410.23289, 2024. 4



[14] Siddhant Haldar and Lerrel Pinto. Point policy: Unifying
observations and actions with key points for robot manipula-
tion. arXiv preprint arXiv:2502.20391, 2025. 4

[15] Siddhant Haldar, Vaibhav Mathur, Denis Yarats, and Lerrel
Pinto. Watch and match: Supercharging imitation with reg-
ularized optimal transport. CoRL, 2022. 4, 5, 8

[16] Siddhant Haldar, Jyothish Pari, Anant Rai, and Lerrel Pinto.
Teach a robot to fish: Versatile imitation from one minute of
demonstrations. arXiv preprint arXiv:2303.01497, 2023. 4

[17] Richard Hartley and Andrew Zisserman. Multiple view ge-
ometry in computer vision. Cambridge university press,
2003. 3

[18] Jonathan Ho and Stefano Ermon. Generative adversarial im-
itation learning. Advances in neural information processing
systems, 29, 2016. 4

[19] Edward S Hu, Kun Huang, Oleh Rybkin, and Dinesh Ja-
yaraman. Know thyself: Transferable visual control policies
through robot-awareness. arXiv preprint arXiv:2107.09047,
2021. 3

[20] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li,
Jiajun Wu, and Li Fei-Fei. Voxposer: Composable 3d value
maps for robotic manipulation with language models. arXiv
preprint arXiv:2307.05973, 2023. 4

[21] Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang,
and Li Fei-Fei. Rekep: Spatio-temporal reasoning of rela-
tional keypoint constraints for robotic manipulation. arXiv
preprint arXiv:2409.01652, 2024. 4, 5

[22] Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang,
Yongqiang Dou, Yanjun Chen, Li Fei-Fei, Anima Anandku-
mar, Yuke Zhu, and Linxi Fan. Vima: General robot manip-
ulation with multimodal prompts. In Fortieth International
Conference on Machine Learning, 2023. 3

[23] Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
Tracker: It is better to track together. 2023. 3, 4

[24] Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
Tracker3: Simpler and better point tracking by pseudo-
labelling real videos. 2024. 4

[25] Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta
Raileanu, Pierre-Luc Bacon, Pascal Vincent, Amy Zhang,
and Mikael Henaff. Motif: Intrinsic motivation from artifi-
cial intelligence feedback. arXiv preprint arXiv:2310.00166,
2023. 4

[26] Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and
Joshua B Tenenbaum. Learning to Act from Actionless
Videos through Dense Correspondences. arXiv:2310.08576,
2023. 4

[27] Teyun Kwon, Norman Di Palo, and Edward Johns. Language
models as zero-shot trajectory generators. IEEE Robotics
and Automation Letters, 2024. 4

[28] Mara Levy, Siddhant Haldar, Lerrel Pinto, and Abhinav
Shirivastava. P3-po: Prescriptive point priors for visuo-
spatial generalization of robot policies. arXiv preprint
arXiv:2412.06784, 2024. 4

[29] Jingxian Lu, Wenke Xia, Dong Wang, Zhigang Wang, Bin
Zhao, Di Hu, and Xuelong Li. Koi: Accelerating online imi-

tation learning via hybrid key-state guidance. arXiv preprint
arXiv:2408.02912, 2024. 4

[30] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Os-
bert Bastani, Vikash Kumar, and Amy Zhang. Vip: Towards
universal visual reward and representation via value-implicit
pre-training. arXiv preprint arXiv:2210.00030, 2022. 4, 5

[31] Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bas-
tani, and Dinesh Jayaraman. Liv: Language-image represen-
tations and rewards for robotic control. In International Con-
ference on Machine Learning, pages 23301–23320. PMLR,
2023. 4

[32] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An
Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Eureka: Human-level reward
design via coding large language models. arXiv preprint
arXiv: Arxiv-2310.12931, 2023. 4

[33] Yecheng Jason Ma, Joey Hejna, Ayzaan Wahid, Chuyuan Fu,
Dhruv Shah, Jacky Liang, Zhuo Xu, Sean Kirmani, Peng Xu,
Danny Driess, Ted Xiao, Jonathan Tompson, Osbert Bas-
tani, Dinesh Jayaraman, Wenhao Yu, Tingnan Zhang, Dorsa
Sadigh, and Fei Xia. Vision language models are in-context
value learners, 2024. 4, 5, 7

[34] Parsa Mahmoudieh, Deepak Pathak, and Trevor Darrell.
Zero-shot reward specification via grounded natural lan-
guage. In International Conference on Machine Learning,
pages 14743–14752. PMLR, 2022. 4

[35] Luca Medeiros et al. Lang-segment-anything. https://
github.com/luca-medeiros/lang-segment-
anything, 2023. Accessed: 2025-02-15. 5

[36] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea
Finn, and Abhinav Gupta. R3m: A universal visual
representation for robot manipulation. arXiv preprint
arXiv:2203.12601, 2022. 4, 5

[37] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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